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T he most common model to support workforce management of telephone call centers is
the M/M/N/B model, in particular its special cases M/M/N (Erlang C, which models

out busy signals) and M/M/N/N (Erlang B, disallowing waiting). All of these models lack
a central prevalent feature, namely, that impatient customers might decide to leave (abandon)
before their service begins.

In this paper, we analyze the simplest abandonment model, in which customers’ patience
is exponentially distributed and the system’s waiting capacity is unlimited (M/M/N � M).
Such a model is both rich and analyzable enough to provide information that is practically
important for call-center managers. We first outline a method for exact analysis of the
M/M/N � M model, that while numerically tractable is not very insightful. We then pro-
ceed with an asymptotic analysis of the M/M/N � M model, in a regime that is appropriate
for large call centers (many agents, high efficiency, high service level). Guided by the as-
ymptotic behavior, we derive approximations for performance measures and propose ‘‘rules
of thumb’’ for the design of large call centers. We thus add support to the growing ac-
knowledgment that insights from diffusion approximations are directly applicable to man-
agement practice.
(Tele-Queues; Erlang C; Erlang A; Telephone Call and Contact Centers; Multiserver Exponential
Queues; Workforce Management or Staffing; Queues with Abandonment; Diffusion Approximation)

1. Introduction and Summary
During recent decades there has been explosive
growth in the number of companies that provide ser-
vices via the telephone, and also in the variety of tele-
phone services provided. A central challenge in de-
signing and managing any service operation is to
achieve a balance between operational efficiency and
service quality, and in telephone services this chal-
lenge is often pushed to the extreme: A large call cen-
ter serves thousands of calls per day, each of which
demands a response within seconds. Analytical mod-
els provide guidance regarding the sought-after bal-
ance.

Modeling a Call Center. A simplified representa-

tion of call-center flows is given in Figure 1. Incoming
calls form a single queue to wait for service from one
of N statistically identical agents. K � N telephone
trunks are connected to an Automatic Call Distribu-
tor (ACD) that manages the queue, connects custom-
ers to available agents, and archives operational data.
Customers arriving when all trunks are occupied en-
counter a busy signal. Such customers might try
again later (‘‘retrial’’) or give up (‘‘lost demand’’).
Customers who succeed in getting through at a time
when all agents are busy (that is, when there are at
least N but fewer than K � N customers within the
call center), are placed in the queue. If waiting cus-
tomers run out of patience before their service begins,
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Figure 1 Schematic Representation of a Telephone Call Center

they hang up (‘‘abandon’’). After abandoning, cus-
tomers might try calling again later.

In basic models of call centers it is commonly as-
sumed that the only parameters under the system
manager’s control are the number of trunks available
(K � N) and the number of agents (N). In most con-
texts the cost of trunk lines is trivial compared to
personnel costs, so in this paper we focus on staffing
decisions (N), assuming that K � � for modeling pur-
poses. Thus busy signals are absent in the models to
be considered, though, we would like to emphasize
that in no way do we advocate here the practice of
unconditional ‘‘no busy signal’’. Indeed, a trade-off
between busy signals and abandonment, in the spirit
of Borst et al. (2000), is a worthwhile direction for
future research.

The classical M/M/N queueing model, also called
the Erlang-C model, is obtained by further assuming
Poisson arrivals, exponentially distributed service
times, and no abandonment. It is the model most of-
ten used in call-center analysis, but it has one glaring
defect: Call abandonment is not a negligible or minor
aspect of call-center operations. This issue is broadly
addressed in §2.

The Square Root Rule for Safety Staffing. In this
paper, we consider the M/M/N model with aban-
donment added. To summarize the central findings,
it will be useful to first review an important principle
regarding capacity choice in the absence of abandon-
ment. Let R � �/� denote the (average) offered load,
where � is the average call arrival rate and 1/� is the
mean call duration. (R is measured in units of service

duration per unit of time.) The principle is as follows:
For moderate to large values of R (or equivalently
moderate to large �, since we are assuming that � is
a fixed parameter of the call center), the appropriate
staffing level is

N � R � ��R, (1)

where � is a positive constant that depends on the
desired level of service. Of course, in practice the val-
ue of N derived from this formula must be rounded
to an integer.

The second term on the right side of (1) may be
described as the excess capacity needed, beyond nom-
inal requirements (the first term), to achieve the target
service level in the face of stochastic variability. Equa-
tion (1) shows that the required excess capacity grows
less than proportionately with the load of calls to be
handled. This phenomenon is aptly described as sta-
tistical economies of scale.

The square root formula (1) was derived and dis-
cussed by Ward Whitt (1992), but as he explained,
similar design rules had been advanced by a number
of other authors during the 1970s and 1980s. (We refer
the reader to Borst et al. (2000) for a historical per-
spective.) Whitt’s treatment of this subject was based
primarily, but not exclusively, on his pioneering work
with Shlomo Halfin (Halfin and Whitt 1981) regard-
ing diffusion approximations for many-server queues.
To be more specific, the foundation of Whitt’s argu-
ment is the following: If one considers a variety of
systems with different moderate to large values of R,
and if the number of agents N is chosen according to
(1) in each case, then the quality of service will be
approximately the same in each system. The measure
of service quality underlying this statement is the
steady-state probability that a caller must wait in the
queue before service. This probability is commonly
referred to as the Erlang-C formula, hereafter abbre-
viated as P{W � 0}. Halfin and Whitt (1981) provided
a formula for computing � in terms of the target value
for P{W � 0}.

The Square Root Rule with Abandonment. En-
riching the M/M/N model to include abandonment,
we assume the following: There is associated with
each arriving caller an exponentially distributed ran-
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Table 1 System Performance in Three Staffing Regimes

Regime Staffing Level Performance Characteristics

Rationalized N � R � ��R P {W � 0} → �(�) and
P {Ab } → 0

Quality-Driven N � R � 	R, 	 � 0 P {W � 0} → 0 and
P {Ab } → 0

Efficiency-
Driven

N � R 
 	R, 	 � 0 P {W � 0} → 1 and
P {Ab } → 	

dom variable that quantifies the individual’s patience;
if a caller’s waiting time in the queue grows to equal
his or her patience, then the call is abandoned. (In the
interest of tractability, we assume that customers who
abandon do not retry.) The patience variables char-
acterizing different callers are independent and iden-
tically distributed with mean �
1, and they are inde-
pendent of all other model elements as well. The
positive quantity � will be referred to as either the
abandonment rate or the impatience parameter, depending
on context. For this model, we use the notation M/
M/N � M, as introduced by Baccelli and Hebuterne
(1981), and we propose to refer to it as Erlang-A (A
for Abandonment, and for the fact that it interpolates
between Erlang-C and Erlang-B, the latter being M/
M/N/N).

It will be shown in this paper that the square root
rule (1) remains valid in the model with abandon-
ment for moderate to large R. Of course, the formula
for � is different in our context: � now depends on
both the abandonment rate � and the target value for
P{W � 0}, and in our setting � may be negative, even
when a small probability of waiting is specified. That
is, to achieve a given target value for P{W � 0}, it
may be sufficient to take N smaller than the offered
load R.

Furthermore, the appropriate value for � in formula
(1) is monotonically decreasing in � for fixed P{W �
0}. That is, a higher abandonment rate reduces the
amount of capacity one needs to achieve a given ‘‘ser-
vice level’’. This fact may be surprising initially, but
the following makes it obvious: Temporarily denoting
by Q the steady-state number of callers in the system,
we have P{W � 0} � P{Q � N}, and Q decreases
stochastically as one increases �. Of course, P{W � 0}
is not the only measure one could use to quantify the
notion of ‘‘service level’’ or ‘‘service quality’’, but the
discussion immediately below shows that perfor-
mance according to other obvious measures is uni-
formly excellent when R is not small and the square
root rule is used for staffing.

Three Staffing Regimes. Another fundamental
measure of service quality is the steady-state proba-
bility that an arrival will abandon before getting ser-
vice, hereafter abbreviated as P{Ab}. Table 1 summa-

rizes the behavior of P{W � 0} and P{Ab} in three
limiting regimes studied later in the paper, each of
which represents a different philosophy with regard
to the design of a call center. (The limit referred to
here is R → �.)

The ‘‘rationalized regime’’ is that where the square
root rule (1) is used to determine system capacity: A
formula will be derived for the limiting P{W � 0},
denoted by �(�) in Table 1 (the formula appears be-
low Table 4 in §5), and it will be shown that P{Ab}
→ 0 as R → �, regardless of how � is chosen. The
‘‘quality-driven’’ regime is where capacity exceeds
nominal requirements by a fixed percentage: It will
be shown that both P{W � 0} and P{Ab} vanish as R
→ �. Finally, in the ‘‘efficiency-driven’’ regime, ca-
pacity falls short of nominal requirements by a fixed
percentage: It will be shown that virtually all arrivals
wait in this case, but P{Ab} is simply equal to the
capacity shortfall, expressed as a fraction of the of-
fered load.

Another interesting performance measure is the
steady-state average waiting time before either ser-
vice begins or the caller abandons, hereafter abbre-
viated E[W]. One has the useful identify � ·E[W] �
P{Ab}, so results cited for P{Ab} in Table 1 translate
immediately into results for E[W ]. Even in the ‘‘effi-
ciency-driven’’ staffing regime where virtually all
callers wait, both P{Ab} and E[W ] remain small if the
capacity shortfall is small.

Actually, the results proved later about the three
staffing regimes are both more refined and more ex-
tensive than the summary provided in Table 1, but
this summary communicates the most important
findings for purposes of system design. Based on this
analysis, we conclude that the rationalized regime is
appropriate in most settings: By choosing the con-
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stant � appropriately, a system manager using the
square root rule (1) can achieve a rational balance be-
tween efficiency and service quality, unless one of
those two concerns utterly dominates the other. De-
termination of �, based on economic considerations
via (asymptotic) optimization, is an important topic
under current research. (See Borst et al. 2000 for M/
M/N dimensioning analysis.)

The results reported in Table 1 support the follow-
ing important, if unsurprising, conclusion: With im-
patient customers and a moderate to large call vol-
ume, system performance is relatively robust; any
staffing level close to the nominal requirement R pro-
duces ‘‘good’’ service. Callers who refuse to wait in-
definitely impose smaller externalities on later arriv-
als than do patient callers, and generally speaking,
they make the system designer’s job easier.

Contributions to System Modeling. From a math-
ematical standpoint, the classical M/M/N model is
fundamentally changed when one incorporates the
phenomenon of abandonment. For example, the mod-
el with abandonment is stable for all parameter com-
binations, whereas the classical model achieves statis-
tical equilibrium if and only if R � N. Also, as we
show by numerical examples, the models with and
without abandonment tend to give very different per-
formance estimates in the parameter regime of pri-
mary interest, even when the abandonment rate � is
small. Because the M/M/N model is so commonly
used for quick-and-dirty performance analysis, these
effects of adding abandonment are thoroughly dis-
cussed and illustrated in this paper (see §2).

Denoting by Q(t) the number of callers present in
the system at time t, either waiting or being served,
we focus on the stochastic process Q � {Q(t), t � 0}.
This process is central in call centers, as will now be
explained. First, it is a visible cue for management
and agents and its realtime value is often displayed
for everyone to see. Moreover, in call centers that pro-
vide toll free services, Q is proportional to the cost of
incoming calls. However, the customer’s point of view
is represented by the waiting time—either potential (i.e.
the time he would wait in queue for his service to
commence if his patience was infinite) or actual. In-
deed, in §3 we introduce a method for calculating a

wide variety of performance measures that involve
the potential and actual waiting times. An important
outcome of our analysis, as shown in Theorem 3 be-
low, is that potential waiting time and queue length
are deterministically related in heavy traffic.

Given the various assumptions laid out earlier, Q
is a birth-and-death process, and so its steady-state
distribution can be written out in an ‘‘explicit’’ for-
mula. However, that formula is complicated enough
to cause difficulties both in numerical evaluation and
in qualitative understanding. After some brief re-
marks about numerical evaluation of ‘‘exact’’ formulas
for steady-state performance measures, most of this
paper deals with approximations in the ‘‘heavy traf-
fic’’ regime, where R is large and R/N is near 1. That
is, we develop approximations for call centers having
a moderate to large number of agents and high agent
utilization.

Rather than developing approximations only for
steady-state quantities, we show that a properly
scaled version of the stochastic process Q is well ap-
proximated by a certain diffusion process in the
heavy traffic regime. This analysis parallels the dif-
fusion approximation developed by Halfin and Whitt
(1981) for many-server models without abandonment.
It helps to explain the steady-state approximations
that spawn the square root formula (1), and gives a
more complete understanding of system behavior in
the heavy traffic regime.

Related Research. As attributed in the sequel,
some of our results are motivated or based on pre-
vious work by Palm (1937, 1943, 1953), Riordan
(1962), Baccelli and Hebuterne (1981), and especially
Halfin and Whitt (1981), and Fleming et al. (1994).
Indeed, both Halfin and Whitt (discussed earlier in
this section) and Fleming et al. focus on heavy traffic
analysis of M/M/N and M/M/N � M systems re-
spectively. In Fleming et al. a diffusion approxima-
tion of the queue process is derived leading to ap-
proximations for the fraction of customers
abandoning and other performance measures.

A general overview of models with abandonment
appears in Boxma and de Waal (1994), with a review
of relevant literature. There have been attempts to an-
alyze more complex models, of which we mention a
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few: Ancker and Gafarian (1963) analyze queues with
abandonment, multiple heterogeneous agents, and fi-
nite capacity through their steady-state equations and
derive the waiting time density. Sze (1984) compares
different approximations for an M/PH/N � PH
model (PH stands for Phase Type distribution) with
retrials, priorities, and nonstationary arrivals. The re-
sults are verified by simulation.

In Harris et al. (1987) and Hoffman and Harris
(1986) the basic model is M/M/N, with the addition
of abandonment, retrials, and a variety of service dis-
ciplines. Assuming a heavily-loaded call center and
using some approximations, they arrive at a system
of steady-state equations that can be solved numeri-
cally. In two recent papers by Brandt and Brandt
(1998, 1999), M/M/N � G models with state-depen-
dent arrivals are analyzed. Applications include sys-
tems with an integrated voice-mail-server and cases
in which idle agents initiate outbound calls. Finally,
fluid and diffusion approximations for time-depen-
dent models with abandonment and retrials, are de-
scribed in Mandelbaum et al. (1999, 2000), both of
which are based on Mandelbaum et al. (1998).

Overall Contribution and Contents. The contri-
butions of the present paper, in our opinion, are both
theoretical and practical, but even more so the bridg-
ing of the two. Specifically:

• Extending the fundamental findings of Halfin
and Whitt (1981) to accommodate abandonment (for
example, Theorems 4 and 2, Table 4) and waiting
times (Theorem 3).

• Revisiting the classical Erlang (1909, 1917) and
Palm (1943) results, and adapting them to the envi-
ronment of the modern call center (§§3, 5.1, and 5.2).

• Adding support to the growing acknowledg-
ment that insights from diffusion approximations are
directly applicable to management practice (§§5.2,
5.3, Appendix A).

• Prepare the necessary ground for an economic
analysis of abandonment, following Borst et al.
(2000).

The rest of the paper is organized as follows: In §2
we provide further motivation as to the relevance of
our results and the M/M/N � M model in general,

to the management of modern call centers. In §3 we
outline a method for exact calculations of a wide va-
riety of performance measures. Then in §4 we focus
on heavy traffic limit theorems, which lead to some
implementations discussed in §5. The paper also has
three appendices: Appendix A displays graphs show-
ing the (excellent) quality of a number of approxi-
mations derived in §5; Appendix B includes compu-
tational details of the method outlined in §3; and
Appendix C contains proofs of Theorems 1–4 with an
extended version of Theorem 2.

2. The Significance of
Abandonment in Practice and
Modeling

A major drawback of models that ignore abandon-
ment is that they either distort or fail to provide in-
formation that is important to call-center managers.
When trying to manage a large call center in heavy
traffic, one must consider the effect of abandoning
customers on service level. It is not enough to consid-
er waiting times or busy signals, especially since
abandonment statistics constitute the only ACD data
that unveils customers’ perception of service quality.

According to the Help Desk and Customer Support
Practices Report (1997), more than 40% of call centers
set a target for fraction of abandonment, but in most
cases this target is not achieved. Moreover, the lack
of understanding of the abandonment phenomenon
and the scarcity of models that acknowledge it, has
led practitioners to ignore it altogether. (For example,
this lead Cleveland and Mayben (1997) to conclude
that abandonment is ‘‘not a good indicator of call-
center performance’’.) This can cause either under- or
over-staffing: On the one hand, if service level is mea-
sured only for those customers who reach service, the
result is unjustly optimistic—the immediate effect of
an abandonment is less delay for those further back
in line, as well as for future arrivals. This would lead
to under-staffing. On the other hand, using workforce
management tools that ignore abandonment would
result in over-staffing as actually fewer agents are
needed in order to meet most abandonment-ignorant
service goals.
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Figure 2 Fraction Queueing—M (48)/M (1)/N (a) vs. M (48)/M(1)/N �
M(0.5) (b)

Table 2 Comparing Results for Models With/Without Abandonment

M/M/N M/M/N � M

Fraction abandoning
Average speed of answer
Waiting time’s 90th percentile
Average queue percentile
Agents’ utilization

—
20.8 sec.
58.1 sec.
17
96%

3.1%
3.6 sec.

12.5 sec.
3

93%

Note. 50 agents, 48 calls per minute, 1 minute average service time, 2 minute
average patience. The values were calculated, and can be verified, using
the ‘‘iProfiler’’ tool available at www.4callcenters.com�. This analysis tool
is based on parts of the present work—in particular §3 and Appendix B.

The significance of abandonment can be seen in
simple numerical examples. Figure 2 shows graphs of
the fraction of customers queueing according to the
M/M/N and M/M/N � M models. It is clear that
these graphs convey a rather different picture of what
is happening in the system they depict, in particular,
in the range of 40 to 50 agents.

Table 2 displays some results from an M/M/N
model and a corresponding M/M/N � M model
with only 3% abandonment. There is a significant dif-
ference in the distributions of waiting time and queue
length—in particular, the average wait and queue
length are both strikingly shorter when abandonment
is taken into account. It is important to realize that

such good performance is not achieved if the arrival
rate to the M/M/N system decreases by 3% (for ex-
ample, the ‘‘average speed of answer’’ in such case is
approximately nine seconds). We note, however, that
the performance of systems in such heavy traffic is
very sensitive to the staffing level—adding three or
four agents to the model without abandonment
would result in performance similar to that displayed
for the model with abandonment (the horizontal dis-
tance between the graphs in Figure 2 shows this
‘‘margin’’). Nonetheless, since personnel costs are the
major expense of call centers (prevalent estimates run
at about 60–70% of total cost), even a 6–8% reduction
in personnel is significant.

Both Figure 2 and Table 2 clearly indicate that it is
possible, while operating in heavy traffic, to simul-
taneously achieve high efficiency (agent utilization
near 100%) and good service (low, but nonnegligible
abandonment rate and waiting time). This is a direct
outcome of economies of scale, as demonstrated in the
next example.

The following is a possible scenario in which our
staffing rules can be used (this scenario is revisited
later in §5.3)—A given call center with N agents, ser-
vice rate �, and arrival rate � (the offered load R �

�/�) , has ‘‘service grade’’ � (high values of � cor-
respond to high service levels). There is a forecast of
a higher arrival rate (R̂ � /�) during a forthcoming�̂ �̂

holiday. The call center’s manager wishes to maintain
the present service level at the call center during the
holiday, and hence needs to decide on an increase in
the number of agents N̂ � N̂(�) for the holiday shifts.
To this end, the manager must first determine the
operational regime of the call center, representing the
desired balance between quality and efficiency. Our
rules then provide N̂(�). For example, in the rational-
ized regime, our recommended staffing level is N̂(�)
� R̂ � ��R̂, where � � (N 
 R)/�R. Moreover,
our analysis actually yields explicit approximations
for a wide range of performance measures (see §5.2).
Specifically, the fraction of customers delayed in
queue is expected to remain unchanged, while the
fraction of customers abandoning, as well as the av-
erage waiting time, will decrease by a factor of
�N/N̂, thus exhibiting economies of scale.
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Figure 3 � as a Service Grade for Large Call Centers—Correlation with Abandonment

Note. Each dot plotted represents data of a half-hour interval. The x-coordinate was calculated via � � (N 
 R )/�R , where R and N are averages over
the half-hours, and the y-coordinate is the fraction abandoning during that half-hour.

One might question the practical value of the above
staffing rules since they are based on limits for large
systems operating in heavy traffic. In this regard, Fig-
ures 4–8 in Appendix A indicate that our results can
be safely applied to call centers with as few as 30 or
even 20 highly utilized agents. Moreover, analysis of
data from moderate to large call centers shows that
indeed both high efficiency and service quality are
achieved as the centers operate in the ‘‘rationalized’’
regime with 
0.5 � � � 1. This is demonstrated by
the scatter plots in Figure 3. The plots display real
data from two call centers, collected in half-hour in-
tervals during a single working day (discarding the
opening and closing hours in which the traffic is not
‘‘heavy’’). Both traffic volumes and staffing levels var-
ied at these call centers throughout the day (left plot:
from 350 to 900 calls per hour, 35 to 90 agents; right
plot: 1,400–3,100 calls per hour, 125–250 agents).

3. Calculating Performance
Measures

Here we present a useful format for expressing per-
formance measures for an M/M/N � M model in
steady state. Details about the calculations of these
expressions appear in Appendix B, also covering
models with finite capacity (M/M/N/B � M). Due
to the underlying birth-death structure, such calcu-
lations are almost (but not quite, due to numerical
issues) trivial. Nevertheless, it is natural and impor-

tant to present them for practical completeness, as
well as a lead to our approximations.

Our calculation of performance measures is based
on the assumption that the system has reached its
steady state. Although the arrival rate to many call
centers is time varying (according to the time of day,
day of the week, holidays, seasonal effects, etc.), and
other parameters such as the number of agents on the
shift may be subject to change, it is assumed that
throughout short time intervals (e.g., an hour) such
changes are small enough to disregard, and are
‘‘slow’’ relative to the speed at which the system
reaches its new (e.g., hourly) steady state. This latter
assumption can be safely applied to call centers at
which the service rate is significantly higher than the
rate of such time variations (e.g., hourly variations vs.
average service time of a few minutes).

We are interested in a ‘‘typical’’ customer, arriving at
the system in steady state (for a discussion on the rig-
orous meaning of ‘‘typical,’’ see Appendix B). Let V be
the customer’s potential waiting time, X be his patience,
and W be the actual waiting time (W � V � X).

Many performance measures that are of interest to
call-center managers can be expressed as expectations
of simple functions of V and X. A representative list
appears in Table 3. Here we make use of indicator
functions of the form 1(a,b](t) that are defined by

1, a � t � b,
1 (t) �(a,b] �0, otherwise.
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Table 3 Performance Measures of the Form E [f (V, X )]

f (v, x ) E [f (V, X )]

1(x,�)(v)
1(t,�)(v � x)
1(t,�)(v � x)1(x,�)(v)
(v � x)1(x,�)(v)
(v � x)1(t,�)(v � x)1(x,�)(v)
g(v � x)

P {Ab }
P {W � t }
P {W � t ; Ab }
E [W ; Ab }
E [W ; W � t ; Ab ]
E [g (W )]

Some important performance measures cannot be
expressed directly by the method proposed, but only
as quotients of performance measures of the type
E[ f (V, X )]. For example, the fraction of customers
abandoning out of those having to wait in queue is
an important measure, yet some experienced man-
agers of call centers tend to discard customers who
were not willing to wait for even a short period of
time t. In such a case one uses

P{V � X � t; V � X}
P{Ab � W � t} �

P{V � X � t}

E[1 (V � X)1 (V)](t,�) (X,�)� .
E[1 (V � X)](t,�)

4. Operational Regimes and
Diffusion Approximations

A central outcome of the present paper is approxi-
mations of performance measures that yield insight
as to their dependence on the model’s parameters.
From our theoretical results, which are also support-
ed by prevailing practice, it follows that moderate to
large telephone call centers are capable of delivering
high service level while also operating under high
utilization. This justifies our focus on approximations
through heavy traffic limits, as N → � (this is equiv-
alent to R → �, since we will be assuming N/R →
1). To this end, a subscript N will now be added to
our notation to indicate the processes and parameters
of the Nth system (i.e., associated with an M/M/N
� M model).

Motivated by the work of Halfin and Whitt (1981)
we use two performance measures—the fraction of
customers abandoning (PN{Ab}), and the fraction de-
layed in queue (PN{W � 0})—as guidelines for choos-

ing appropriate operational regimes. Most telephone
call centers try to avoid a high percentage of aban-
donment, without over-staffing. This usually trans-
lates into operating with a nonnegligible fraction of
customers having to queue, and a small fraction of
abandonment.

We now characterize the dependence of the model’s
parameters on N. Primarily, we are interested in a
sequence in which �N → � as N → � and �N � �,
which corresponds to scaling up the staffing level (N)
to accommodate the increasing load (�N) while main-
taining a service rate (�) that does not vary with staff-
ing level or load. Furthermore, we restrict our current
discussion to the case limN→� �N � �, 0 � � � �,
although our results, as reported in Appendix C, in-
clude the regimes � � 0 (extreme patience) and � �
� (extreme impatience) as well.

We first introduce the notion of traffic intensity de-
fined by �N � �N/N�. The results of Theorems 1 and
2 below, together with the guidelines stated above,
lead us to focus on the following regime:

lim �N(1 
 � ) � �, 
� � � � �.N
N→�

The discussion later in §5.3, formalized by Theo-
rem 4, strongly supports our contention that this is
indeed the regime of interest for moderate to large
call centers.

Following are Theorems 1 and 2, with a discussion
about the derivation of the stated regimes from their
results. Proofs of these theorems, and other selected
results quoted throughout the paper, appear in Ap-
pendix C.

THEOREM 1. Assume that limN→� �N � ��, for some 0
� �� � �. Then the limiting behavior of the fraction of
abandoning customers is given by

0, 0 � � � 1,�lim P {Ab} �N  1N→� 1 
 , � � 1.�� �

Based on this result, it seems clear that from the
point of view of abandonment there is no reason to
operate with �� � 1: �� � 1 already yields a vanishing
abandonment probability. On the other hand, when
�� k 1, the limiting abandonment probability is high-
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er than usually desired. Moreover, from the point of
view of the agents’ utilization (i.e., the fraction of time
they spend answering calls, given by [�N(1 

PN{Ab})]/N�), the maximum limiting utilization is al-
ready achieved with �� � 1. Thus, �� � 1 arises as a
special balance point between the call center’s effi-
ciency and service quality.

The restriction to �� � 1 is consistent with the
work of Halfin and Whitt (1981) who analyze the
M/M/N model, and find that interesting limiting
behavior occurs when �N � 1 
 �/�N, 0 � � � �
(‘‘interesting’’ in the sense that only then is the lim-
iting behavior of the fraction of customers having
to wait in queue nondegenerate). Because an M/
M/N � M model with very patient customers is
‘‘close’’ to an M/M/N model (supported by The-
orem 2* appearing in Appendix C—an extension of
Theorem 2 below), we also restrict ourselves to the
case of limN→� �N(1 
 �N ) � �, but here 
� � �
� �. (As already mentioned, Halfin and Whitt
(1981) covers only � � 0, because otherwise there
is no steady state.)

Theorem 2 below states diffusion approximations
for the process Q � {Q(t), t � 0}. We consider the
sequence of stochastic processes {qN } that is ob-
tained from {QN } through centering and rescaling,
namely

Q (t) 
 NNq (t) � .N �N

Centering around N gives rise to a process whose
absolute value is either the queue length (qN � 0)
or the number of idle servers (qN � 0). The rescaling
factor �N emerges as the appropriate order of
magnitude, that gives rise to a nontrivial continuous
limiting process q. The latter will be used to ap-
proximate our original birth-death processes {QN },
via QN N � q�N, thus offering approximationsd�
for both transient (QN (t), t � 0) and steady-state
(QN (�)) behavior.

The mathematical details of the theorem are not a
prerequisite for following its consequences, which are
explained immediately after the theorem and its cor-
responding remarks.

THEOREM 2. Assume that

lim �N(1 
 � ) � �, 
� � � � �,N
N→�

lim � � �, 0 � � � �.N
N→�

If qN(0) q(0), then qN q, where q is the unique so-
d d→ →

lution of the following stochastic differential equation

dq(t) � f (q)dt � �2�db(t),
 
�(� � x), x � 0,
 f (x) � �
(�� � �x), x � 0.

(Here b denotes a standard Brownian Motion, and XN

X denotes the ‘‘weak convergence’’ or ‘‘conver-d→
gence in distribution’’ of a sequence {XN} to X.)

REMARKS.
(1) This limit was conjectured (with a slightly

different centering) by Fleming et al. (1994), and a
proof was given for the weak limit of the stationary
distributions (i.e., q(�)). An extended version of this
theorem, including diffusion limits for the cases � �
0 and � � � appears in Appendix C.

(2) The limiting process stated in this theorem is
qualitatively characterized by a combination of two
Ornstein-Uhlenbeck processes (q � 0, q � 0) with dif-
ferent restraining forces.

So far we have dealt with diffusion limits of the
queue-length process Q. However, as displayed in Ta-
ble 3, many performance measures involve the poten-
tial waiting time V. Now, the distribution of V coincides
(see Appendix B) with the stationary distribution of
the process �(t)—the virtual waiting time at time t (i.e.,
the time spent waiting in queue by a hypothetical
infinitely patient customer arriving at time t). We
shall thus focus on approximating the stationary dis-
tribution of �(t), denoted �(�).

A simple relationship between the diffusion limits of
the queue-length process and the virtual waiting-time
process can be motivated heuristically as follows: If
there are idle agents, the virtual waiting time is zero;
otherwise the number of waiting customers is �q�N
(in view of Theorem 2). How long does it take for a
customer to pass through this queue? Customers will
be leaving at a rate of N� (through service) � o(N)
(abandonment; indeed, the abandonment rate of cus-
tomers in front of our tagged customer is no greater
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than �q�N). Dividing the queue length by the rate that
customers are leaving it yields the virtual waiting time,
which is therefore �[q/(�N�)]�.

Formally, such an approximation is derived
through Theorem 3 that follows. Here we use the
common notation for the standard normal density
and distribution functions (� and � respectively)

x1 2
x /2�(x) � e , �(x) � �(y) dy,��2� 
�

as well as the hazard rate defined by

h(x) � �(x)/[1 
 �(x)] � �(x)/�(
x).

Proof of this theorem is based on a useful result by
Puhalskii (1994) that links diffusion approximations
for � and Q.

THEOREM 3. Let v � [q/�]�, where q solves the sto-
chastic differential equation stated in Theorem 2. Then

(1) �N�N(t) v(t), 0 � t � �, where both �N(�) and
d→

v(�) are limits in distribution, as t → �, of �N(t) and v(t),
respectively.

(2) v(�) has the distribution function Fv given by

1 
 F (x)v

w(
�, ��/�), x � 0,
�  h(���/�)

w(
�, ��/�) · , x � 0.
�(���/�, ���x)

Here

1

h(
xy)
w(x, y) � 1 � ,[ ]yh(x)

�(x)
�(x, y) � .

1 
 �(x � y)

Because �N�N (�) v(�), the approximation wed→
use is

d d
V � � (�) � v(�)/�N,N

which translates into FV(x) � Fv(�Nx).

5. Implementation
In §§3 and 4 we reported a variety of results con-
cerning the M/M/N � M model. Because we advo-

cate this model as a substitute for the M/M/N model
commonly used in call-center analysis, it makes sense
to shed some light on how to apply and interpret our
results. The context of the discussion will be that of
managing a moderate to large call center in heavy
traffic (‘‘heavy’’ such that the abandonment phenom-
enon is not negligible). First, we briefly address the
issue of estimating the values of the model’s param-
eters. Then we suggest which performance measures
should be used by call-center managers to define the
service level. Finally, we discuss the use of our ap-
proximation results and derive ‘‘staffing rules.’’

5.1. Estimating the Parameters
To use the model and the results introduced, it is
necessary to determine the values of the various pa-
rameters. The number of agents on shift is fully con-
trolled by the call center’s manager. Arrival and ser-
vice rates are usually estimated from historical ACD
data. As discussed in §3 for time varying arrival rates,
small time intervals are selected, in which the arrival
rate is approximately constant.

The main difficulty is to estimate the abandon-
ment rate (�) or equivalently, the average patience
(1/�). The difficulty arises from the fact that the
direct data we can collect is censored—we can only
measure the patience of customers who abandon
the system before their service began. For the cus-
tomers receiving service we only have a lower
bound for their patience—the amount of time they
spent waiting in queue. There are statistical meth-
ods to deal with such censored samples. While we
shall not discuss these methods here, interested
readers are referred to the Appendix in Zohar et al.
(2000) for a survey and further statistical references.
Another, more basic problem for estimating �, is
that in most cases the ACD data only contains av-
erages, as opposed to call-by-call measurements
(see Mandelbaum et al. (2000) for call-by-call data
analysis). To this end we suggest a method for es-
timating the average patience that is based on the
following balance equation:

� ·E[# waiting in queue] � �P{Ab}. (2)

This equation describes the steady-state balance be-
tween the rate that customers abandon the queue
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(left-hand side) and the rate that abandoning custom-
ers (i.e., customers who will eventually abandon) en-
ter the system.

Through Little’s theorem (� ·E[W ] � E[# waiting in
queue]), we obtain an alternative equation

� ·E[W ] � P{Ab}. (3)

The average wait in queue and fraction of customers
abandoning are fairly standard ACD data outputs,
thus providing the means for estimating �. We note,
however, that (2) and (3) are known to hold exactly
only under exponentially distributed patience. (See Zo-
har et al. (2000) for a discussion of (3) and general-
izations.)

5.2. Approximations
As stated earlier, the abandonment phenomenon is
extremely important to a call center’s manager. Nev-
ertheless, this does not imply that the only perfor-
mance measure of interest is the fraction of customers
abandoning the queue. There are many additional im-
portant performance measures, and it is necessary to
select the few that best reflect the service level at the
call center, and can serve as service goals and service
grades.

Approximations can be used to overcome compu-
tational difficulties arising when attempting exact
evaluation of performance measures, but they can
also reveal how performance measures depend on the
model’s parameters. Such an understanding is nec-
essary when trying to derive simple rules of thumb
(see §5.3 below).

Combining the approximation for the stationary
virtual waiting time (Theorem 3) with the general
representation of performance measures in §3 enables
us to derive approximations for many performance
measures. These approximations should be most ac-
curate in the case of a large call center operating in
heavy traffic, with negligible blocking. (The accuracy
of some of these approximations is demonstrated in
Appendix A.)

EXAMPLE. Assume a performance measure that can
be expressed as E[g(W )] for some function g. Recall
that W � X � V, and that X and V are independent.
Therefore,

E[g(W)]

� �


�x� g(x � v)�e dF (v) dx� � V
0 0

� E[g(0)](1 
 w(
�, ��/�))

� �


�x� g(x � v)�e �N�� ·w(
�, ��/�)� �
0 0

� �(�N��v � ���/�, 
 �N��v) dv dx.

The resulting approximations for several performance
measures are

P{W � 0} � w(
�, ��/�),

h(���/�)
P{Ab � W � 0} � 1 
 ,

h(���/� � ��/(N�))

h(���/�) �
P{Ab} � 1 
 ·w 
�, ,� �[ ] 	�h(���/� � ��/(N�))

h(���/�) � 1
E[W] � 1 
 ·w 
�, · ,� �[ ] 	� �h(���/� � ��/(N�))

E[# busy agents]

h(���/�)� � �
� 
 1 
 · w 
�, · ,� �[ ] 	� � �h(���/� � ��/(N�))

E[# waiting in queue]

h(���/�) � �
� 1 
 ·w 
�, · ,� �[ ] 	� �h(���/� � ��/(N�))

P{W � t}

h(���/�)

�t� w(
�, ��/�) · ·e , t � 0,

�(���/�, �N��t)

P{Ab � W � t}

�(���/�, �N��t)
�t� 1 
 ·e , t � 0.

�(���/� � ��/(N�), �N��t)

REMARKS.
(1) Along the same lines, we have developed fur-

ther useful approximations, notably for E[W � W � t]
and E[W � Served]. These have been omitted due to
excessive ‘‘bulk.’’

(2) Some of the approximations above can also
be derived via the diffusion limit of the queue-length
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Table 4 Staffing Rules for Three Operational Regimes

Regime Staffing Level Guidelines

Rationalized N � [R � ��R ] P {W � 0} → �(�) and
P {Ab } � �(�)/�N

Quality-Driven N � [R � 	R], 	 � 0 P {W � 0} → 0 and
P {Ab } � o(1/�N )

Efficiency-
Driven

N � [R 
 	R], 	 � 0 P {W � 0} → 1 and
P {Ab } → 	

process (Theorem 2). Note, however, that the approx-
imating expressions thus arrived at are not identical,
but they coincide as N → �. For example, considering
the fraction of customers abandoning, we have on the
one hand

� t

�xP{Ab} � E[1 (V)] � �e dx dF (t)(X,�) � � V

0 0

�


�t/�N� (1 
 e ) dF (t),� v
0

and on the other hand (using (2))

�
P{Ab} � E[# waiting in queue]

�

� ��t�N �t�N
� dF (t) � dF (t) .� q � v� �� �0 0

5.3. Staffing Rules
It is important for a call center’s manager to be able
to anticipate the impact of changes on the service lev-
el. Examples of such a change are an increase in the
call arrival rate due to a marketing campaign, or a
change in the number of agents on shift.

Most expressions for performance measures de-
rived using the M/M/N � M model are quite com-
plex. Even the approximations in §5.2 tend to be too
complex to enable an understanding of how the val-
ues of the parameters affect the performance mea-
sure. It is desirable, therefore, to derive simple ‘‘rules
of thumb’’ to support decision making.

We have the following result, analogous to the re-
sult by Halfin and Whitt (1981) that concerns M/M/
N queues.

THEOREM 4. Assume that �N � �, 0 � � � �. Then

lim �N(1 
 � ) � �, 
� � � � �,N
N→�

if and only if

lim P {W � 0} � �, 0 � � � 1,N
N→�

if and only if

lim �NP {Ab} � �, 0 � � � �,N
N→�

in which case

� � w(
�, ��/�),

� � [��/� ·h(���/�) 
 �] ·�.

(Here w and h are as in Theorem 3 above).
REMARK. This result holds at the ‘‘extremes’’ as well,

namely

� � 
� iff � � 1 iff � � � and

� � � iff � � 0 iff � � 0.

We deduce from the above results that also for M/
M/N � M queues the ‘‘interesting’’ (as explained in
§4) limiting behavior is when �N � 1 
 �/�N, but
here (in contrast to Halfin and Whitt 1981) � is not
restricted to be positive.

In light of Theorem 4 and Theorem 1, we introduce
in Table 4 three regimes of operation, with three
matching staffing rules (this is a slightly extended
version of Table 1 from §1).

REMARKS.
(1) The staffing level for the rationalized regime

is derived directly from �N � 1 
 �/�N, 
� � � �
� (see §§1 and 2 in Whitt (1992) for a detailed dis-
cussion). The ‘‘extremes’’ of Theorem 4 only set
bounds for the staffing levels. Any staffing level such
as N � � � 	 ·�a with 	 � 0, 1 � a � 0.5, is adequate
(�	 for quality-driven, 
	 for efficiency-driven).
However, we suggest taking a � 1, with which there
is a clear differentiation between slightly underload-
ed call centers (quality-driven), slightly overloaded
call centers (efficiency-driven), and the ‘‘critically’’
loaded call centers (rationalized).

(2) The ‘‘guidelines’’ above follow directly from
Theorem 4, except for the fraction abandoning (P{Ab})
in the efficiency-driven regime that involves Theorem 1.

Following the result of Theorem 4, and continuing
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Figure 4 Approximating P {Wait � 0}

Figure 5 Approximating P {Abandon}

in the spirit of Whitt (1992), we suggest � (or 	) as a
‘‘service grade.’’ The main significance of this grade is
for comparing two systems, in particular, in the case
of a single system before and after an expected change.
Once a manager has decided which of the three re-
gimes of operation is suitable for her call center, she
can determine the service grade and use the appro-
priate staffing rule. Moreover, analysis of empirical
data (Figure 3 is representative) shows that, in practice,
the value of � lies in the range of 
0.5 � � � 1.

We conclude by revisiting the scenario from §2: Sup-
pose a given call center operates in the ‘‘rationalized’’
regime with N agents, service rate �, and arrival rate
�. The service level is quantified by a service grade
�. There is a forecast of a higher arrival rate during�̂
a holiday. The call center’s manager wishes to main-
tain the service level at the call center, and needs to
decide how many agents to have on shift (N̂). Based
on the appropriate staffing rule � � ��/�N(1 
 �/
N�), we get N̂ �  /� � . Moreover, the�̂ �� �̂/�
anticipated holiday performance is:

(1) Fraction waiting: P{W � 0} � �(�) (as in the
original system).

(2) Fraction abandoning: P{Ab} � �(�)/�N̂ (de-
crease by a factor of �N̂/N).
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Appendix A. Accuracy of the Approximations
The approximations derived in §5.3 are based on heavy traffic limit
theorems in which the number of agents and call volume are taken
to infinity. It is therefore of practical interest to see how accurate
these approximations are when applied to call centers that are not
extraordinarily large.

In Figures 4–8 we plot approximations (‘�’ signs) for a number
of performance measures vs. exact values (solid line) based on the
analysis of an M/M/N � M model. All cases assume a call volume

of 50 calls per minute, each requiring an average handling time of
one minute. Staffing levels range from 20 to 80 agents (implying
traffic intensities from 0.625 up to 2.5!). Three different values of
average patience are considered:

• Graph a: 10 minutes (very patient).
• Graph b: 1 minute (moderately patient).
• Graph c: 6 seconds (very impatient).

The main conclusion from this display is that in most cases these
approximations are excellent (for any practical use) even in the case



GARNETT, MANDELBAUM, AND REIMAN
Designing a Call Center with Impatient Customers

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 4, No. 3, Summer 2002 221

Figure 6 Approximating P {Wait � 10 secs.}

Figure 7 Approximating P {Abandon/Wait � 10 secs.}

Figure 8 Approximating E [Wait � Served]

of a medium-sized call center handling moderate traffic intensities.
Some additional, specific remarks are stated below.

REMARKS.
(1) Figure 5 shows only a single graph (b) because the graphs

(both exact and approximate) of the other two cases (a and c) prac-
tically coincide with it. This is easy to explain from our theoretical
results. By Theorem 1, to leading order the abandonment probabil-
ity with � � 1 does not depend on �. Although the abandonment
probability with � � 1 is more sensitive to � (the leading order term
is zero), the differences do not show up due to the scale of the
graph.

(2) In Figure 7 the exact-value graphs for cases b and c were
not calculated for all values up to 80 agents, due to numerical dif-
ficulties in obtaining these values. Specifically, because we use
P{Ab � W � t} � (P{Ab; W � t})/(P{W � t}), when P{W � t} becomes
extremely small (see Figure 6), one encounters precision difficulties.
To overcome such problems, the exact-value graph for case c was
produced using simulations. This graph is limited to 50 agents be-
cause as the number of agents increases, the event in which a call
waits in queue for more than 10 seconds becomes extremely rare,
thus requiring very long simulations. The difficulties we encoun-
tered here provide a good example of the benefits of having ap-
proximations for such performance measures. Indeed, the approxi-
mation is not as accurate as the others, but the values it provides
are useful and capture exact behavior.

(3) Note that the scale in Figure 8 is of log-type (log10), for
benefit of the clarity of display. The upper range of the graphs (a,
b, and c) in this case is 550, 55, and 5 seconds, respectively.

Appendix B. Calculating E[ f (V, X)] in an
M/M/N/B � M Model

To calculate E[ f (V, X )], we start with the following decomposition:

E[ f (V, X)] � E[ f (V, X) ·1 (V)] � E[ f (V, X ·1 (V)](0,�) {0}

N
1

� E[ f (V, X) ·1 (V)] � E[ f (0, X)]· � � � . (4)
(0,�) B k� �k�0

Here we use � to denote the stationary distribution of the queue-
length process Q(t), namely

lim P{Q(t) � n} � � , n � 0, 1, 2, . . . , B.n
t→�

A general expression for these probabilities is given by
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k (�/�)
� , 0 � k � N,0 k!

� � k k N� (�/�) � , N � k � B,� 0� �N� � ( j 
 N)� N!j�N�1

where

1N B kk N(�/�) � (�/�)

� � � .
 
 �0 � �[ ]k! N� � ( j 
 N)� N!k�0 k�N�1 j�N�1

REMARK. For a blocked customer (i.e. the queue was full upon his
arrival) the convention V � 0 is introduced.

For all functions f which seem of interest in our case, E[ f (0, X)]
evaluates to zero or one. Therefore, we proceed to calculate the first
expression. We present three different methods for performing this
calculation, each with its own virtues and drawbacks.

Our calculations require the distribution function of V. Recall that
V is the potential waiting time of a typical customer. What is meant
by a ‘‘typical’’ customer? Consider the sequence {wn, n ∈ � }, where
wn is the potential waiting time of the nth customer. Let Fw be the
stationary distribution of this sequence. Quoting from Baccelli and
Hebuterne (1981), Fw is also the stationary distribution of the pro-
cess �(t)—the virtual waiting time at time t (i.e., the time spent wait-
ing in queue of a hypothetical infinitely patient customer arriving
at time t). Therefore, a typical customer’s potential waiting time, V,
has distribution function Fw.

Similarly, we are interested in Vn, which is a random variable
whose distribution is that of V given n customers in queue upon
arrival, and all agents busy, n � 0, 1, . . . ; Vn has distribution func-
tion Fn.

The distribution of V is not given beforehand, and is derived
through analysis of the model. On the other hand, Vn can be ex-
pressed as the sum of n � 1 independent exponential random var-
iables with parameters N�, N� � �, . . . , N� � n�, the ith of these
representing the period of time the customer spent in the ith place
in queue, before advancing to the (i 
 1)th (due to end of service
or abandonment from the queue in front of him).

Method A. Conditioning on the number of customers in the
queue upon arrival, and substituting the explicit expression given
by Riordan (1962) (Equation (83) on p. 111) for F̄n(t) � 1 
 Fn(t),
we have

B
N
1 B
N
1k n
k(�/�) (�/�)
kE[ f (V, X)1 (V)] � c� (
1) I(k) , (5)
 
(0,�) N k! (n 
 k)!k�0 n�k

where

� �

2 
(c�k)�t 
�xI(k) � � c f (t, x)e e dt dx and c � N�/�.� �
0 0

Calculating the values of I(k) is usually a simple task. The main
drawback of this method is the alternating signs in the first sum,
which cause it to be numerically unstable. Therefore, we present the
next method, which avoids this problem.

Method B. Starting similarly to Method A, and using the relation

n n

�t k 
�t n(
e ) � (1 
 e )
 � �k�0 k

to eliminate one sum, we arrive at

B
N
1 n(�/�)
2E[ f (V, X)1 (V)] � � c� J(n), (6)
(0,�) N n!n�0

where
� �


(x�ct)� 
�t nJ(n) � f (t, x)e (1 
 e ) dx dt. (7)� �
0 0

Here, calculating the values of J(n) tends to be more costly because
the integrals must usually be solved numerically.

These methods lose some of their attractiveness when dealing
with infinite buffers (B � �). Then, sums appearing in both meth-
ods become infinite, and must be truncated at some point for im-
plementation (the alternating signs in Method A can be problematic
in the aspect of truncation). Because this case forces us to consider
the issue of precision tolerance, we present the third method, which
is a straightforward numerical integration.

Method C. Following Riordan (1962), and solving the more gen-
eral case of any buffer size B, we arrive at the function f , where�

V

f /P{V � 0} is a density function, given by�
V

 �

�t � B 
 N, (1 
 e )� �� 

�  f (t) � N�� 1 
V N �(B 
 N) 

�

�t� exp (1 
 e ) 
 N�t , t � 0. (8)� ��

Here � and � denote the gamma and incomplete gamma functions,
respectively, defined by

�

x
1�(x) � t exp(
t) dt and�
0

y
x
1�(x, y) � t exp(
t) dt, y � 0.�

0

Now we are left with the evaluation of the double integral

� �


x� �E[ f (V, X) ·1 (V)] � f (t, x)�e f (t) dx dt. (9)(0,�) � � V
0 0

The integral with respect to x is usually solved analytically and
rather easily (depending on f ), leaving us to perform one numerical
integration (with respect to t).

Some additional remarks concerning the infinite buffer case fol-
low.

REMARKS.
(1) When the system’s buffer is unlimited, solving the station-

ary distribution equations involves an infinite sum. A solution is
given by Palm (1943), expressing the stationary distribution as a
function of the easily calculated blocking probability in an M/M/
N/N system (denoted here by P{Bl}), with the same arrival and
service rates:
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� �n

 P{Bl} N!
· , n � N,

N
n� N� �
1 � A , 
 1 P{Bl} n!� � � � � �N� � �

P{Bl}
� N� 1 � A , 
 1 P{Bl}� � � �N� �

n
N�� ��
� , n � N,

N� N�
� 1 · · · � (n 
 N)� � � �� �

where

xyye
A(x, y) � ·�(y, xy).

y(xy)

(2) For B � � the density function f given here becomes a�
V

special case of the result by Baccelli and Hebuterne (1981) for an
M/M/N � G model with patience distribution F, namely

t
�f (t) � N�� exp � (1 
 F(u)) du 
 N�t , t � 0.V N �� �

0

Appendix C. Outlines of Proofs
Outlines for the proofs of Theorems 1–4 follow.

PROOF OF THEOREM 1. We first point out an intuitive approach
for the overloaded case (�� � 1), based on the fact that in systems
with many agents it is possible to achieve very high utilization.
Indeed, in an M/M/N � M model the utilization is given by
the rate at which ‘‘work’’ reaches the agents (�N (1 
 PN {Ab}))
divided by the maximum rate at which it can be processed (N�).
Thus when N → �, assuming that the utilization is �1, we obtain
the result.

We now proceed with the rigorous proof, based on bounding the
sequence {PN{Ab}} from above and below, with the two bounds con-
verging to the desired limit.

We begin with the lower bound, which is more intuitive. The
utilization of agents in an M/M/N � M queue in steady state must
be less than one. Therefore,

�N(1 
 PN{Ab}) � N�,

from which we obtain

1
lim inf P {Ab} � 1 
 .N �N→� �

Before turning to the upper bound, we note two monotonicity
properties of PN{Ab} that are proved in Bhattacharya and Ephrem-
ides (1991):

(i) With N, �, and � fixed, PN{Ab} is increasing in � (or �).
(ii) With N, �, and � fixed, PN{Ab} is increasing in �.
Now we deal with the upper bound. Note that PN{Bl}, the prob-

ability of blocking in an M(�N)/M(�)/N/N queue, is the limit of

PN{Ab} as � → � in the M(�N)/M(�)/N � M(�N) queue. Thus, by
(ii) above, PN{Ab} � PN{Bl} for any �N with 0 � �N � �.

If �N � N���, with 1 � �� � �, it was shown by Jagerman (1974,
p. 538), that


1
2� � 1 2� � � 1� � � �P {Bl} � 
 � . (10)N 3 5 2[ ]� 
 1 (� 
 1) N (� 
 1) N� � �

We deal with �N � N� ·�� � o(N) as follows. Choose 0 � 	 � ��


 1, and define � � N� · (�� � 	), � � N� · (�� 
 	). Hence we� 

N N

have (through Jagerman’s result and monotonicity)

� 
 � 
 1 � � � 
 1� �
� lim inf P {Bl} � lim sup P {Bl} � ,N N� 
 � � � �N→� N→�� �

and taking 	 ↓ 0 yields
1

lim sup P {Ab} � lim P {Bl} � 1 
N N �N→� N→� �

for �� � 1.
We complete the proof for �� � 1 using (i) above: Because PN{Ab}

with �� � 1 must be smaller than with �� � 1 � 	 for any 	 � 0,
we have that for �� � 1

1
lim sup P {Ab} � lim 1 
 � 0.N � �1 � ��↓0

An extended version of Theorem 2 that includes diffusion limits
for the cases � � 0 and � � � follows.

THEOREM 2*. Assume that

lim �N(1 
 � ) � �, 
� � � � �,N
N→�

lim � � �, 0 � � � �.N
N→�

If qN(0) q(0), thend→
(1) Weak convergence: qN q, where q is the unique solution of ad→

stochastic differential equation, according to the following regimes:

� � 0: �dq(t) � f (q)dt � �2�db(t),


�(� � x), x � 0,
f (x) � �
��, x � 0.

0 � � � �: �dq(t) � f (q)dt � �2�db(t),


�(� � x), x � 0,
f (x) � �
(�� � �x), x � 0.

� � �:

 dq(t) � 
�(� � q(t))dt � �2�db(t) 
 dY(t),
 q � 0; Y(0) � 0, Y nondecreasing,

� q dY � 0.�
 0

(2) Interchangeable limits: � x} � P{qt � x}.lim P{q (�) limN→� N t→�

PROOF OF THEOREM 2*, PART 1. We will deal with each of the three
cases (corresponding to the value of �) separately. When � � 0 and
0 � � � �, Stone’s criteria (1963) hold, hence the limiting process
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is easily found through the convergence of the infinitesimal expec-
tation and variance. The � � � case is more difficult because the
state space ‘‘shrinks.’’

We omit a discussion of uniqueness and refer readers to Dupuis
and Ishii (1993) and Mandelbaum and Pats (1995).

� � 0: Here the abandonment rate converges to 0. As N grows,
the abandonment becomes less significant, and indeed the limiting
process is identical to the heavy traffic limit of a sequence of M/
M/N queues (Halfin and Whitt 1981). The proof in this case is
almost identical to that in Halfin and Whitt (see the proof of The-
orem 2) by using Stone’s criteria: The state space of the rescaled
process qN becomes dense in � as N → �; the infinitesimal expec-
tation (�N) and variance (� ) are given by2

N

 N � �Nx� �N
 � , x � 0, �N �N
� (x) �N N� � �Nx� �N N
 � , x � 0,

�N �N

N � �Nx� �N� , x � 0, N N
2� (x) �N N� � �Nx� �N N � , x � 0,

N N

converging, as N → �


�(� � x), x � 0,
lim � (x) �N �N→� 
��, x � 0,

2lim � (x) � 2�.N
N→�

0 � � � �: This case appears in Fleming et al. (1994) as a con-
jecture without a proof, with slightly different centering. It can be
proved either as in the case � � 0 or using Fleming et al.

� � �: Here the proof is more complex. Stone’s criteria does not
hold because the state space of the limiting process shrinks to
(
�, 0], exhibiting reflection at the origin. We circumvent this dif-
ficulty as follows: Let XN � QN 
 N, and define two complementary
and disjoint subsets of ��, corresponding to the times XN spent in
(
�, 0] or in (0, �). Thus via time changes we obtain (from XN) two
processes, each ‘‘existing’’ in a different part of �. We then show
that the process ‘‘existing’’ in (
�, 0] converges to the proposed
limit. This is achieved using the procedure introduced in Mandel-
baum and Pats (1995). Because the process XN makes alternating
excursions to (
�, 0] (‘‘negative’’ excursions) and (0, �) (‘‘positive’’
excursions), by showing that the duration of the ‘‘negative’’ excur-
sions is of order �(1/�N) and that of the ‘‘positive’’ excursions is
o(1/�N), we conclude that the time spent by XN in (0, �) becomes
‘‘negligible’’ as N → �. The proof is then completed using an In-
verse Random Time Change Theorem (see the Appendix in Nguyen
1993).

PROOF OF THEOREM 2*, PART 2. The proof of the interchangeable
limits is done through specific calculation of both cases, namely the
stationary distribution of the diffusion limits (right-hand side,

‘‘Rhs’’ below) and the weak limit of the stationary distributions
(left-hand side, ‘‘Lhs’’ below). Here we also deal separately with the
three cases corresponding to the value of �.

Rhs: First, we find the stationary distribution of the diffusion
limits. This is accomplished by using the results of Browne and
Whitt (1995, §18.3). They provide a simple procedure for calculating
the density function ( f (x)) of the stationary distribution for diffu-
sion processes that have piecewise continuous parameters; reflect-
ing boundary points, if finite, or inaccessible, if infinite. Following
their procedure we obtain

� � 0:

 �(x � �)
�(�) ·� · , x � 0,

�(�)f (x) � 


�(�) ·� exp(
x�), x � 0,

0 � � � �:

 �(x � �)
��/� ·h(���/�) ·w(
���/�) · ,

�(�) x � 0,
f (x) � 

�(x��/� � ���/�)
��/� ·h(���/�) ·w(
�, ��/�) · ,

�(���/�)
x � 0,

� � �:

�(x � �)
 , x � 0,

�(�)f (x) � 


0, x � 0.

REMARK. When � � 0, a stationary distribution exists only for
positive values of �.

Lhs: Now we find the weak limit (if it exists) of the sequence of
stationary distributions {qN(�), N � 1, 2, . . .}. Note that these dis-
tributions always exist because �N � 0. Our discussion is in terms
of the sequence of cumulative distribution functions, denoted by
{FN} converging to F.

We deal separately with the intervals x � 0 (corresponding to
QN(�) � N in the original system) and x � 0. Given x � 0 there is
no queue and therefore no abandonment. Hence the conditional dis-
tribution (denoted F� ) is identical to that emerging from a sequence
of M/M/N/N queues, namely

�(x � �)
 , x � 0,

�(�)�F (x) � 
1, x � 0.

This leaves us with determining F on x � 0. For the 0 � � � �

case we quote the result by Fleming et al. (1994), with a slight
adjustment since their rescaling is

Q 
 �N Nq̄ � .N ��N

This difference only amounts to a ‘‘shift’’ of the distribution
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Q (�) 
 N � Q (�) 
 � � 
 N dN N N N Nq (�) � � � → q̄(�) 
 �.N [ ]	N�N �� ��N N

Therefore, the density of q(�) is obtained by ‘‘shifting’’ the density
of q̄(�) by �, which yields

 �(x � �)
��/� ·h(���/� ·w(
�, ��/�) · ,

�(�) x � 0,
f (x) � 

�(x��/� � ���/�)
��/� ·h(���/�) ·w(
�, ��/�) · ,

�(���/�)
x � 0.

Now we use this result as an upper and lower bound for the � �

0 and � � � cases, respectively.
When � � 0 we must assume � � 0, otherwise the sequence is

not tight. Denoting F̂N � P{qN(�) � x � qN(�) � 0}, we find the limit
of this sequence, by ‘‘sandwiching’’ it between two converging se-
quences with a common limit. The ‘‘lower’’ sequence (bounding
from below) is of conditional stationary distributions corresponding
to a sequence of M/M/N queues, denoted by {F }. According to


N

Halfin and Whitt (1981), this sequence has a limit

0, x � 0,

F (x) � � 
�x1 
 e , x � 0.

As stated above, the ‘‘upper’’ sequence corresponds to a sequence
of M/M/N � M queues with 0 � � � �, and is denoted by {F̄N}.
Here we have that

�(x��/� � ���/�) 
 �(���/�)
F̄(x) �

1 
 �(���/�)

h(���/�)�(x��/� � ���/�)
� 1 
 .

h(x��/� � ���/�)�(���/�)

By taking � ↓ 0 and relying on the asymptotic behavior of h(t) as t
→ �, we get

x��/� � ���/� �
2¯lim F(x) � 1 
 lim exp 
 x � 2x� 2� �[ ]����/��→0 �→0


�x� 1 
 e .

This has completed the ‘‘sandwich.’’ These results, put together,
yield the density function for this case:

 �(x � �)
�(�) ·� · , x � 0,

�(�)f (x) � 


�(�) ·� exp(
x�), x � 0.

Finally, by taking � → � in the 0 � � � � case we get that for � �

� all the mass of the distribution is concentrated in x � 0, and F �

F�. Therefore, for this case we have

�(x � �)
 , x � 0,

�(�)f (x) � 


0, x � 0.

PROOF OF THEOREM 3. We start out by showing that �N�N [q/d→
�]�, a result that relies on a corollary by Puhalskii (1994) dealing
with first passage times. Most of the notation we use here follows
the example in Puhalskii (pp. 951–954), replacing the superscript n
with subscript N for the parameters and processes corresponding
to a model with N agents. Hence we have

Q � {Q (t), t � 0}, A � {A (t), t � 0},N N N N

D � {D (t), t � 0},N N

as the queue, arrival, and departure processes, respectively.
Let wN(t) be the virtual waiting time at t:

w (t) � inf{s � 0 : D (s � t) � Q (0) � A (t) 
 (N 
 1)}.N N N N

We define rescaled processes

1 1 1
X (t) � D (t), Y (t) � A (t), K (t) � Q (t),N N N N N NN N N

and an additional process Z characterized via wN(t) � (Z (t) 
3 3
N N

t)�, or equivalently

3Z (t) � inf{s � 0 : X (s) � Y (t) � K (0) 
 (1 
 1/N)}.N N N N

Now introduce

X(t) � �t (X�(t) � �), Y(t) � �t, K(0) � 1,

and a first passage time

Z3(t) � inf{s � 0 : X(s) � Y(t)},

noting that Z3(t) � t.
Finally, let

3U (t) � q(0) 
 ��t � ��b(t) 
 q(t),

3V (t) � 
��t � ��b(t) � q(0).

From here, applying Puhalskii (1994) and the result of Theorem 2*
for the 0 � � � � case, we get

q(t)d3�N(Z 
 t) → ,N �

which yields, through continuous mapping
�

q(t)d3 ��Nw (t) � �N(Z (t) 
 t) → ,N N [ ]�

completing the proof.
Part 1: Follows immediately from Theorem 2* (0 � � � � case)

where the parameters of the diffusion process q are provided, and
the density of q(�) is given (in the proof above). Part 2: Note that
qN has a stationary distribution and let qN(0) have this distribution.
Hence, for all 0 � t � �, qN(t) has this distribution. Therefore, �N(t)
also has the same distribution, for all 0 � t � �. Using the opening
result completes the proof.

PROOF OF THEOREM 4. The directions going from the center (
� �

� � �) outward are by-products of Lemmas 1 and 2 below, as are
the explicit expressions for � and �. The remaining directions are
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dealt with by taking � up to � and down to 
�, using the known
asymptotic behavior of h(t) : h(t) � t, t → �.

� → �: An increase in � represents a decrease in congestion, and
therefore � (and �) also decreases. � is found by upper bounding
the fraction abandoning with the fraction blocked in an M/M/N/
N queue. Hence, as � → �,

��/�h(
�)
� � lim w(
�, ��/�) � lim � 0,

h(���/�) � ��/�h(
�)�→� �→�

� � lim lim �NP {Ab} � lim lim �NP {Bl} � lim h(
�) � 0.N N
�→� N→� �→� N→� �→�

� → 
�: Here we use the reverse argument, bounding from be-
low:

��/�h(
�)�
� � lim w 
�, � lim � 1,� �	� h(���/�) � ��/�h(
�)�→
� �→
�

� � lim [��/� ·h(���/�) 
 �] ·� � �.
�→
�

LEMMA 1.

�(�), � � 0,


lim P {W � 0} � w(
�, ��/�), 0 � � � �,N N→�

0, � � �.

PROOF. Calculating directly, we have

lim P {W � 0} � lim P{Q (�) � N} � P{q(�) � 0}.N N
N→� N→�

Hence, this result is arrived at through simple integration of the
densities found in part 2 of the proof of Theorem 2*.

LEMMA 2. Assume 0 � � � �. Then

lim �NP {Ab} � [��/� ·h(���/�) 
 �] ·w(
�, ��/�).N
N→�

PROOF. First, we express PN{Ab} as a function of PN{W � 0} and
PN{Bl}, whose asymptotic behavior is known (see Jagerman 1974
and Lemma 1). In §5.1 we give the balance equation PN{Ab} �

� ·E[W], which can be rewritten as

PN{Ab} � � ·E[W � W � 0]PN{W � 0}.

Inserting Riordan’s (1962) expression for the conditional expecta-
tion, we get

N�/�
1 
� /�N1 (� �) eNP {Ab} � 1 
 � P {W � 0}.N N� �� �(N�/�, � /�)N N

Through Palm’s (1943) representation we obtain after a few simple
manipulations

1 P {Bl}/�N NP {Ab} � 1 
 � ·P {W � 0}.N N� �� P {Bl}/� 
 1 � P {Bl}N N N N

Finally, using the connection between �N and PN{Bl}, we get

1 P {Bl}/�N NP {Ab} � 1 
 �N � �� (1 
 P {Bl})/(1 
 P {W � 0}) 
 1 � P {Bl}N N N N

� P {W � 0}.N

Now multiplying by �N and taking N → �

h(
�)(1 
 w(
�, ��/�)) �
lim �NP {Ab} � 
� � w 
�, ,N � � � �	�w(
�, ��/�)N→�

which completes the proof because h(x)(1 
 w(x, y)) � (1/
y)h(
xy)w(x, y).
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